Towards Healthcare
AI in Genomics Market Size | 23.6% - CAGR by 2032

Artificial Intelligence (AI) in Genomics Market Size (USD 7,365.59 Mn) Report by 2032

The report covers AI in Genomics Market Segmentations such as offering into software and services, addressing drug discovery & development, precision medicine, diagnostics, animal research, agriculture and other applications. End users includes pharmaceutical & biotech companies, government organizations, research organizations and others. Technological examines machine learning, deep learning, supervised learning, reinforcement learning, unsupervised learning and other emerging technologies. Functionality evaluates genome sequencing, gene editing, clinical workflows and predictive genetic testing & preventive medicine. The report offers the value (in USD Million) for the above segments.

AI in Genomics Market Size, Share and Advantages Report

The global AI in genomics market size is estimated to grow from USD 397.64 million in 2022 at 23.6% CAGR (2023-2032) to reach an estimated  USD 7,365.59 million by 2032, as a result of growing cross-industry collaborations and increasing R&D.

AI in Genomics Market Size 2023 To 2032

Unlock Infinite Advantages: Subscribe to Annual Membership

Embracing the AI era in genomics:

The field of genomics has been revolutionized by the integration of artificial intelligence (AI) technologies. AI in genomics combines the power of advanced algorithms and machine learning techniques with large-scale genomic data to unlock new insights into the human genome and drive advancements in personalized medicine. AI in the genomics market has witnessed significant growth in recent years, with a wide range of applications across research, clinical diagnostics, drug discovery, and precision medicine.

One of the prominent areas where AI has made a substantial impact in genomics is research. AI algorithms can analyze vast amounts of genomic data, identify patterns, and uncover hidden relationships between genes, genetic variations, and diseases. This has led to the discovery of novel disease biomarkers, potential therapeutic targets, and a deeper understanding of the genetic basis of complex diseases. In the field of clinical diagnostics, AI in genomics has enabled more accurate and efficient interpretation of genomic data for disease diagnosis and risk assessment. AI algorithms can analyze genetic variants, predict disease susceptibility, and provide personalized treatment recommendations based on an individual's genomic profile. This has the potential to revolutionize healthcare by enabling tailored and precise medical interventions.

Global AI adoption Rates 2021

The growth of AI in genomics is also driving advancements in precision medicine. With the integration of AI technologies, healthcare providers can leverage genomic data to make informed decisions about disease prevention, diagnosis, and treatment. By considering an individual's unique genomic profile, AI-powered precision medicine approaches can deliver more targeted and effective interventions, reducing adverse reactions and improving patient outcomes.

Enhancing State-Level Genomic Sequencing to Strengthen Local COVID-19 Response

Since the COVID-19 pandemic began, genomic sequencing efforts in the U.S. have lagged behind, especially compared to other countries. While the federal government is working to boost sequencing at the national level, it's also crucial for individual states to build their own infrastructure. This will enable a more timely and accurate local response to sequencing data.

The U.S. has sequenced 200,000 cases so far, while the U.K. has sequenced 350,000. Many U.S. states have been under-sequencing, which complicates targeted public health measures, responses to new variants, and efficient contact tracing. With new federal funding available, states have a chance to develop a sequencing system that addresses both COVID-19 and future public health needs. This includes creating a sequencing network among existing diagnostic and sequencing labs, building a local database for swift public health action, and assembling a team of experts to interpret the data for local responses.

Thriving Together: Market Growth Propelled by New Product Launches and Collaborative Ventures

The AI in the genomics market is experiencing significant growth, and one of the key drivers behind this expansion is the continuous launch of new products and the formation of collaborative ventures within the industry. These factors are contributing to the development of innovative solutions and the advancement of AI technologies in genomics. As stated in IBM Global AI Adoption Index 2022, 35% of companies have reported using AI in their business operations. Additionally, 42% of companies mentioned that they are exploring AI, indicating a growing interest in adopting AI technology. This marks a four-point increase from 2021, indicating steady growth in AI adoption across industries. The findings suggest that more organizations are recognizing the potential benefits of AI and are actively considering its implementation in their business strategies.

In addition, companies operating in the AI in genomics market are constantly introducing new products to cater to the growing demand for advanced genomic analysis tools. These products range from AI-powered software platforms to hardware solutions that facilitate genomic data processing and analysis. The introduction of new products enhances the capabilities of researchers and clinicians in leveraging AI for genomics research, diagnosis, and treatment. For instance,

  • In November 2022, Amazon Web Services (AWS) introduced Amazon Omics, a specialized genomics service designed to support healthcare and life sciences organizations in running IT-intensive bioinformatics workflows. Powered by AWS, Amazon Omics enables bioinformaticians, researchers, and scientists to efficiently store, analyze, and derive insights from various types of omics data, including genomic and transcriptomic data. This service is tailored to meet the specific needs of the genomics field, providing a scalable and secure infrastructure for processing large and complex datasets.
  • In June 2022, IBM launched its Watson for Genomics in European countries for clinical use. The software was already been used in hospitals in North America and Asia for several years.

Furthermore, collaboration between different stakeholders in the genomics and AI sectors is a significant driver of market growth. Academic institutions, research organizations, technology companies, and healthcare providers are joining forces to combine their expertise and resources in developing AI-driven genomics solutions. Collaborative ventures facilitate the exchange of knowledge, access to diverse datasets, and the pooling of resources, accelerating the development and adoption of AI. For instance,

  • In March 2022, InstaDeep, a leading AI company, announced a collaboration with NVIDIA to leverage the powerful capabilities of the NVIDIA Cambridge-1 supercomputer. InstaDeep aims to utilize this advanced computing infrastructure to accelerate advancements in biology and genomics.
  • In April 2023, Ultima Genomics announced a collaboration, combining the "$100 genome" technology with Genome Insight's AI-powered analysis. This partnership aims to bring together advanced genetic sequencing capabilities with cutting-edge artificial intelligence algorithms for genomic data analysis. By integrating these technologies, Ultima Genomics seeks to provide cost-effective and efficient solutions for genomic analysis, enabling researchers and healthcare professionals to gain valuable insights from genomic data at an affordable price. This collaboration has the potential to revolutionize genomic research and contribute to advancements in personalized medicine and other areas of healthcare.

Building a Smarter Healthcare System: Government Funding Boosts AI Research

The AI and Health and Care Awards is an initiative led by the NHS AI Lab, with the aim of promoting and facilitating the responsible adoption of artificial intelligence in the field of health and care. Recognizing the transformative potential of AI, the awards program seeks to accelerate the integration of AI technologies in a safe, ethical, and effective manner. By supporting innovative AI projects and solutions, the program aims to improve patient outcomes, enhance healthcare delivery, and drive advancements in the health and care sector. Through collaboration with various stakeholders, the NHS AI Lab is working towards harnessing the power of AI to benefit patients, clinicians, and the overall healthcare system.

  • In May 2023, The U.S. National Science Foundation (NSF) made an exciting announcement regarding the expansion of its National Artificial Intelligence Research Institutes initiative. Building on the success of the initial round of funding in 2020, the NSF is establishing 11 new institutes, bringing the total number to 18. This expansion represents a combined investment of $220 million, allowing the institutes to have a broader reach across the United States.
  • Through three rounds of awards, a total of around $138 million had been invested in 86 AI technologies as part of the AI and Health and Care Awards program. These investments have had a significant impact, benefiting over 300,000 patients and leading to improvements in the care and treatment of various health conditions. AI technologies have been applied in areas such as cancer, heart disease, diabetes, mental health, and neurological disorders, contributing to advancements in diagnosis, treatment, and patient care. The investments enabled the development and deployment of innovative AI solutions that have the potential to revolutionize healthcare and make a positive difference in the lives of patients across the UK.
  • The third round of the AI in Health and Care Awards resulted in funding being awarded to nine companies. These awards aim to accelerate the testing and deployment of the most promising AI technologies in the healthcare sector. Since their establishment in 2019, the awards have focused on developing AI technology to assist patients in managing long-term conditions, enhancing the speed and accuracy of diagnosis, and addressing the challenges posed by the Covid-19 pandemic, such as backlogs and waiting lists. The awarded companies will play a crucial role in advancing healthcare through the application of AI, ultimately improving patient outcomes and the overall delivery of healthcare services.
  • In July 2021, Deep Genomics, a leading company in the field of AI-driven drug discovery, successfully raised $180 million in a Series C funding round. The funds secured will be utilized to advance the company's innovative AI-discovered drug programs for genetic diseases into clinical development.
  • In the summer of 2021, NHGRI initiated the Genomics Research Elucidates Genetics of Rare Disease (GREGoR) Consortium. This consortium aims to address the challenge of rare genetic diseases that have not yet been fully characterized, including the identification of the underlying genetic causes. The consortium will receive substantial funding of nearly $80 million over a span of five years. This investment will support researchers in their efforts to identify and study the genetic factors involved in rare diseases, ultimately leading to improved diagnosis, treatment, and care for affected individuals.

Customized Care: Market Growth Driven by Precision Medicine and Personalized Healthcare

The AI in genomics market is witnessing significant growth, and one of the major drivers behind this expansion is the increasing focus on precision medicine and personalized healthcare. The convergence of AI and genomics is revolutionizing healthcare by enabling tailored treatments and individualized care based on a patient's genetic makeup. This trend is propelling market growth and opening up new opportunities for AI in genomics.

Precision medicine aims to provide targeted treatments based on an individual's unique genetic characteristics. AI algorithms and machine learning techniques are used to analyze large-scale genomic data and identify specific genetic markers associated with diseases, drug responses, and treatment outcomes. By leveraging AI in genomics, healthcare providers can develop personalized treatment plans and interventions, leading to improved patient outcomes. The growing adoption of precision medicine approaches is driving the demand for AI technologies in genomics.

In addition, personalized healthcare goes beyond precision medicine and encompasses a holistic approach to patient care. AI in genomics plays a crucial role in providing personalized healthcare by analyzing genomic data and integrating it with other health-related information such as medical records, lifestyle data, and environmental factors. This comprehensive analysis enables healthcare professionals to develop personalized prevention strategies, early detection methods, and targeted interventions. The increasing emphasis on personalized healthcare is fueling the demand for AI in genomics solutions.

Furthermore, AI-powered tools and algorithms are essential for the analysis of large-scale genomic data. Genomic sequencing technologies generate vast amounts of data, and AI can effectively process, interpret, and extract meaningful insights from this data. By combining AI with genomics, researchers and clinicians can uncover patterns, identify genetic variants, and predict disease risks. The ability to efficiently analyze genomic data is crucial for advancing precision medicine and personalized healthcare, driving the adoption of AI in genomics.

Moreover, the increasing adoption of genomic testing for disease diagnosis and risk assessment is contributing to the growth of AI in genomics. Genomic tests provide valuable insights into an individual's genetic predispositions, enabling early detection and personalized interventions. AI algorithms can enhance the accuracy and efficiency of genomic testing, aiding in the interpretation of test results and guiding healthcare decisions. The rising demand for genomic testing is driving the adoption of AI technologies in genomics.

From Data to Insights: Overcoming Data Quality and Standardization Barriers in AI Genomics

One of the key restraints in the AI in genomics market is the challenge of data quality and standardization. Genomic data is complex and heterogeneous, often originating from different sources and generated using various platforms and technologies. This variability in data formats, quality, and standards poses significant challenges for AI algorithms and analysis pipelines. Several aspects related to data quality and standardization can hinder the progress of AI in genomics market.

Genomic data can exhibit significant variability due to differences in sequencing technologies, sample preparation methods, and data generation protocols. This variability can affect the performance and generalizability of AI algorithms, making it challenging to draw accurate conclusions from the data. In addition, genomic data is prone to errors, including sequencing errors, alignment errors, and variant calling errors. These errors can impact the reliability and accuracy of AI models trained on such data. Moreover, incomplete or missing data can introduce biases and affect the robustness of AI algorithms.

Furthermore, genomic data is often stored in various file formats, such as FASTQ, BAM, VCF, and others. The absence of standardized formats across different sequencing platforms and analysis tools can make it difficult to integrate and compare data from different sources. It requires additional preprocessing and harmonization steps to ensure compatibility and interoperability. Interpreting genomic data requires accurate and up-to-date annotations that link genomic variants to relevant biological information and disease associations. However, the annotation of genomic data is an ongoing process, and new discoveries continually emerge. The lack of standardized and comprehensive annotation resources can impact the interpretation and utilization of genomic data in AI applications.

Moreover, genomic data is highly sensitive and contains personal health information. Ensuring data privacy, security, and compliance with ethical guidelines are paramount in genomic research and AI applications. These concerns can limit the availability and sharing of high-quality genomic data, which is essential for training robust AI models.

Addressing these challenges requires concerted efforts from researchers, clinicians, and regulatory bodies. Here are some potential strategies to improve data quality and standardization in AI-driven genomics:

  • Standardization Efforts: Establishing standardized data formats, protocols, and quality control measures can enhance data interoperability and comparability across different genomic datasets and platforms. Initiatives like the Global Alliance for Genomics and Health (GA4GH) aim to develop standards and best practices for genomic data sharing and analysis.
  • Data Quality Control: Implementing rigorous quality control measures during data generation, processing, and analysis can help identify and mitigate data quality issues. Standardized quality control metrics and guidelines can assist in identifying and filtering out low-quality data points.
  • Data Sharing and Collaboration: Encouraging data sharing and collaboration among researchers, institutions, and organizations can facilitate the pooling of large-scale, high-quality genomic datasets. This sharing promotes data harmonization, enables benchmarking of AI models, and improves the generalizability of AI algorithms.
  • Improved Annotation Resources: Continued efforts to enhance genomic annotation resources and databases can support accurate interpretation and analysis of genomic data. Collaborative initiatives to curate and update annotation databases can ensure that AI algorithms have access to comprehensive and reliable information.
  • Regulatory Frameworks: Developing and implementing regulatory frameworks that address data privacy, security, and ethical considerations can foster responsible data sharing and utilization in AI-driven genomics. Ensuring compliance with regulations and guidelines can build trust and facilitate the responsible use of genomic data.

By addressing data quality and standardization challenges, the AI in genomics market can unlock its full potential in transforming healthcare, enabling personalized medicine, and advancing our understanding of genetic diseases.

Unleashing the Power of AI: Seizing the Opportunity in Genomics with Next-Generation Sequencing (NGS)

The field of genomics has experienced a significant transformation with the advent of Next-Generation Sequencing (NGS) technologies. These advanced sequencing platforms have enabled the generation of vast amounts of genomic data, opening up new opportunities for AI applications in genomics. The combination of NGS and AI has the potential to revolutionize various aspects of genomics research, diagnosis, and personalized medicine. 

NGS generates massive datasets that require sophisticated analysis methods to extract meaningful insights. AI algorithms, such as machine learning and deep learning, can process and analyze these large-scale datasets, uncovering hidden patterns, identifying genetic variants, and predicting disease outcomes. AI-driven data analysis accelerates the discovery of novel genetic markers, biomarkers, and therapeutic targets, leading to advancements in disease understanding and treatment. In addition, NGS combined with AI holds immense potential for advancing precision medicine. By analyzing an individual's genomic data, AI algorithms can identify specific genetic variations that influence disease susceptibility, treatment response, and prognosis. This enables the development of personalized treatment plans tailored to an individual's genetic profile. AI can also predict drug responses, identify potential adverse reactions, and guide the selection of targeted therapies, improving patient outcomes.

AI-powered analysis of NGS data can enhance diagnostic capabilities in genomics. It can aid in the identification of disease-causing mutations, genetic predispositions, and hereditary conditions. AI algorithms can interpret complex genomic data and provide accurate and rapid diagnoses for various genetic disorders and cancers. This expedites the diagnostic process, enabling timely interventions and improving patient management. Furthermore, NGS data combined with AI can significantly impact drug discovery and development. AI algorithms can analyze genomic data from patient populations, identify genetic signatures associated with specific diseases, and assist in target identification and validation. This facilitates the development of more targeted therapies and improves the success rate of drug discovery programs.

AI-driven genomics can provide valuable decision-support tools for clinicians. By integrating patient-specific genomic data with AI algorithms, clinicians can make more informed treatment decisions, select appropriate therapies, and monitor treatment response. This empowers healthcare professionals to deliver personalized care, optimize treatment strategies, and improve patient outcomes. Moreover, NGS generates vast amounts of data that need to be integrated with other biomedical datasets to fully understand the complexities of human biology and disease. AI techniques can facilitate the integration of diverse datasets, such as genomic, transcriptomic, proteomic, and clinical data, enabling comprehensive analysis and knowledge discovery. AI-powered tools can uncover novel associations, biomarkers, and therapeutic targets that would be challenging to identify using traditional methods.

The integration of AI and NGS has the potential to transform genomics research, diagnosis, and patient care. It enables the extraction of valuable insights from large-scale genomic datasets, facilitates personalized medicine approaches, accelerates drug discovery, and enhances clinical decision-making. As AI continues to advance and NGS technologies become more accessible, the opportunities in genomics will continue to expand, ushering in a new era of precision healthcare.

AI in Genomics Market Companies

  • IBM
  • NVIDIA Corporation
  • Benevolent AI
  • Verge Genomics
  • MolecularMatch, Inc.
  • SOPHiA GENETICS
  • PrecisionLife Ltd.
  • Lifebit
  • FDNA, Inc.
  • Empiric Logic
  • Microsoft
  • Deep Genomics
  • Fabric Genomics Inc.
  • Freenome Holdings, Inc.
  • Cambridge Cancer Genomics
  • Data4Cure Inc.
  • Engine Biosciences Pte. Ltd
  • Genoox Ltd.
  • Diploid
  • DNAnexus Inc.

Segments Covered in AI in Genomics Market Report

By Offering

  • Software
  • Services

By Application

  • Drug Discovery & Development
  • Precision Medicine
  • Diagnostics
  • Animal Research and Agriculture
  • Others

By End User

  • Pharmaceutical & Biotech Companies
  • Government Organizations
  • Research Organizations
  • Others

By Technology

  • Machine Learning
    • Deep Learning
    • Supervised Learning
    • Reinforcement Learning
    • Unsupervised Learning
    • Other
  • Other Technologies

By Functionality

  • Genome Sequencing
  • Gene Editing
  • Clinical Workflows
  • Predictive Genetic Testing & Preventive Medicine

By Geography

  • North America
    • U.S.
    • Canada
  • Europe
    • U.K.
    • Germany
    • France
  • Asia-Pacific
    • China
    • India
    • Japan
    • South Korea
    • Malaysia
    • Philippines
  • Latin America
    • Brazil
    • Rest of Latin America
  • Middle East & Africa (MEA)
    • GCC
    • North Africa
    • South Africa
    • Rest of the Middle East & Africa
  • Insight Code: 5046
  • No. of Pages: 150
  • Format: PDF/PPT/Excel
  • Last Updated: 24 May 2023
  • Report Covered: [Revenue + Volume]
  • Historical Year: 2021-2023
  • Base Year: 2024
  • Estimated Years: 2025-2034

Meet the Team

Rohan Patil is a market research expert with 5+ years of experience in healthcare, specializing in market dynamics, emerging trends, and technology-driven innovations to guide data-driven decisions for healthcare organizations.

Learn more about Rohan Patil

Aditi Shivarkar, with 14+ years of healthcare market research experience, ensures the accuracy, clarity, and relevance of reports. Her expertise helps businesses make informed decisions and stay competitive in healthcare sectors.

Learn more about Aditi Shivarkar

Related Reports

FAQ's

Yes, AI can automate and streamline genomics workflows. AI technologies can automate steps involved in NGS workflows, such as sample preparation, sequencing, data analysis, and interpretation. This reduces manual labor, minimizes errors, and improves efficiency. AI-driven automation enables faster turnaround times, scalability, and cost-effectiveness in genomics research and clinical applications.

AI algorithms can help address data quality and standardization challenges in genomics by analyzing large datasets and identifying inconsistencies, errors, and biases. AI techniques can be applied to clean and preprocess genomic data, ensuring its quality and standardization. Additionally, AI can help identify patterns and develop algorithms that improve data standardization processes, enhancing the overall reliability and accuracy of genomic data analysis.

The future of AI in genomics is promising. As AI continues to advance and NGS technologies become more accessible, AI will play a critical role in driving genomics research, personalized medicine, and drug discovery. The integration of AI with other emerging technologies like single-cell genomics and spatial genomics holds great potential for further advancements in understanding human biology, and disease mechanisms and developing targeted therapies.

National Human Genome Research Institute, HHS’ Tracking Accountability in Government Grants System, and U.S. Department of Health & Human Services